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The dynamic structure factor S�Q ,�� of water has been determined by high-resolution inelastic x-ray
scattering �IXS� in a momentum �Q� and energy �E� transfer range extending from 2 to 4 nm−1 and from
±40 meV. IXS spectra have been recorded along an isobaric path �400 bar� in a temperature �T� interval
ranging from ambient up to supercritical �T�647 K� conditions. The experimental data have been described in
the frame of the generalized hydrodynamic theory, utilizing a model based on the memory function approach.
This model allows identifying the active relaxation processes which affect the time decay of density fluctua-
tions, as well as a direct determination of the Q, T, and density ��� dependencies of the involved transport
parameters. The experimental spectra are well described by considering three different relaxation processes: the
thermal, the structural, and the instantaneous one. On approaching supercritical conditions, we observe that the
microscopic mechanism responsible for the structural relaxation is no longer related to the making and break-
ing of intermolecular bonds, but to binary intermolecular collisions.
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I. INTRODUCTION

Water plays a unique role in natural science and technol-
ogy. Despite its apparent chemical simplicity, water presents
various physical anomalies whose origin still eludes a com-
prehensive explanation �1�. Owing to the relevance of the
subject and the fundamental nature of the unresolved
puzzles, water still represents a challenge for researchers in
various disciplines. There is an almost unanimous consensus
in ascribing the origin of the water peculiarities to the almost
perfect tetrahedral arrangement of molecules, as well as to
the occurrence of a 1:1 donor-to-acceptor ratio of hydrogen
bonds �HB�. These features favor the formation of a highly
ordered local structure that continuously rearranges itself on
a sub-ps time scale. Consequently, experimental investiga-
tions of the THz dynamics of water promise to provide valu-
able insight.

Direct access to this dynamical range is provided, from
the computational side, by molecular dynamics �MD� simu-
lations, and, from the experimental one, by high-frequency
spectroscopies such as inelastic neutron �INS� or x-ray �IXS�
scattering. All MD �2–4�, INS �5–9�, and IXS �10–16� inves-
tigations performed so far on liquid water showed the exis-
tence of propagating collective excitations with wave vectors
�Q� in the nm−1 range and characteristic energies ���L�Q��
much larger than what was predicted by the classical hydro-
dynamic theory for longitudinal acoustic �LA� modes �17�.
This effect was ascribed either to a coupling between an
optical and an acoustic branch �8,9�, or to the occurrence of
an active structural ��� relaxation, similar to the one ob-
served in glass-forming systems �13–16�. Such a relaxation
yields, as a most spectacular effect, the Q increase of the
propagation speed of LA modes �positive sound dispersion�.
Actually, the latter framework has proven to provide a more
coherent explanation of the Q and T dependencies of this
phenomenon. The idea at the basis of such a model relies

upon the existence of two opposite regimes characterizing
the dynamical response of the system: i.e., the viscous and
the elastic one. The viscous regime is probed whenever an
acoustic wave with a period, TL=�L

−1�Q�, much longer than
the time scale 	� of the relaxation process is excited. Under
these conditions the system behaves like a viscous fluid as
predicted by the classical hydrodynamics theory. Conversely,
when the period of the acoustic wave becomes much shorter
than 	�, the dynamic response enters into the elastic regime.
Here, such short time scales are probed that the medium
appears somehow “frozen,” like in the corresponding glass.
Its internal degrees of freedom become too slow to effi-
ciently dissipate the energy of the acoustic wave, and conse-
quently the sound velocity is higher than in the viscous re-
gime.

Most of the theoretical models developed to describe this
�viscoelastic� transition relied on the hypothesis that the hy-
drodynamic equations can be safely extended beyond the
viscous limit, provided the transport coefficients are general-
ized as appropriate �-dependent quantities. A model belong-
ing to such a “generalized hydrodynamics” class has been
successfully tested to describe the line shape of IXS spectra
�14� of water. Among other results the work showed that 	�

follows an Arrhenius behavior with an activation threshold
comparable to the HB energy throughout the whole liquid
phase. This evidence strongly supports the hypothesis that
the microscopic mechanism responsible for the relaxation
process is indeed the continuous rearrangements of the water
HB network.

In this work we present new, high resolution IXS mea-
surements extending the thermodynamic range so far inves-
tigated by IXS, into the supercritical regime of the phase
diagram �Tc=647 K, Pc=221 bar, and �c=322 kg/m3�.
Though IXS studies of water along the liquid-to-supercritical
crossover are reported in literature �18�, no firm experimental
hints are so far available on the corresponding evolution of
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active relaxations. To gain a deeper insight into this topic, we
propose here a more informative line-shape analysis based
on the memory function formalism, thus providing a full
characterization of relaxations active in water. As a result, we
find that viscoelastic effects on the acoustic dispersion gradu-
ally disappear by going from liquid to supercritical condi-
tions, and, correspondingly, the temperature dependence of
	� deviates from the Arrhenius law typical of the liquid
phase. The latter effect reveals major changes in the nature of
the involved relaxation, which in the liquid phase is domi-
nated by collective arrangements, while in the supercritical
region becomes essentially governed by binary intermolecu-
lar collisions.

The paper is organized as follows. In Sec. II we introduce
the employed experimental technique and mention the rel-
evant experimental details. In Sec. III we illustrate the for-
malism used for the data analysis, and in Sec. IV the fitting
procedure is described. The main results of the data analysis
are extensively discussed in Sec. V. Finally, Sec. VI summa-
rizes the relevant results and provides the conclusions.

II. EXPERIMENT

The experiment was carried out at the inelastic scattering
beamline ID28 of the ESRF at Grenoble �France�. The x-ray
source consists of three undulators tuned to optimize the
photon flux at 21.747 keV. After a premonochromatization
�
E /E�10−4�, achieved by a cryogenically cooled channel
cut silicon�1,1,1� monochromator, the x-ray beam impinges
on the very high-resolution backscattering monochromator,
which is operated at a Bragg angle of 89.98°, and employs
the silicon�11,11,11� reflection order. The backscattered x
rays have an energy resolution of �1.1 meV �
E /E=6
�10−8� with a photon flux of 4�109 photons/s �19�. This
highly monochromatic beam is focused onto the sample by a
gold coated toroidal mirror, yielding a focal spot size of
270�90 �m2 �horizontal�vertical, FWHM� at the sample
position. The signal scattered from the sample is energy ana-
lyzed by five independent spherical silicon crystals, employ-
ing the same reflection order and approximately the same
Bragg angle as the monochromator, that are mounted at the
end of the 7-m-long spectrometer arm �20�. This arm can be
rotated around a vertical axis passing through the scattering
center in order to select the desired momentum transfer Q
=2ki sin�
�, where 2
 and ki are the scattering angle and the
incident wave vector, respectively. The angular offset be-
tween adjacent analyzers is �1.5°, corresponding to a Q
offset of �3 nm−1 for the chosen incident energy. The mo-
mentum resolution was set to 0.4 nm−1 FWHM by slits in
front of the analyzers. The energy-analyzed x rays are de-
tected by a Peltier cooled array of silicon detectors �21�. The
overall experimental resolution was determined to be
1.6 meV FWHM, using the essentially elastic scattering re-
sponse of a PMMA sample at its first sharp diffraction peak
�10 nm−1�, and at T=10 K. For each thermodynamic state a
measurement of the static structure factor S�Q� of the sample
was performed using an additional detector, mounted on the
spectrometer arm. A detailed description of the spectrometer
is reported elsewhere �22�.

Ultrapure water was loaded in a specially designed high-
pressure, high-temperature, large volume cell made of In-
conel 625 �23�. The sample was pressurized by a manually
driven piston and thermoregulated by means of a resistor.
The maximum pressure and temperature achievable are
1 kbar and 750 K, respectively. The temperature and pres-
sure stability were monitored by a thermocouple and two
pressure gauges, and were found to be better than ±0.2 K
and ±5 bar, respectively. The x-ray beam passes through two
1-mm-thick diamond windows kept at 10-mm distance,
roughly matching the photoabsorption length of water. The
whole setup was kept under vacuum in order to avoid tem-
perature gradients and scattering from air surrounding the
cell.

The energy dependence of the empty cell intensity was
explicitly measured for all the exploited scattering geom-
etries. The highest value is reached at the lowest Q value
�i.e., 2 nm−1� and it amounts to 1.5% of the total scattered
signal. This contribution rapidly decreases with increasing Q,
and has therefore been simply discarded in the line-shape
analysis. The results of the empty cell measurements, cor-
rected by the X-ray attenuation through the water sample
�I / I0�0.45�, are reported in Fig. 2 �open circles�, and com-
pared to the total measured signal after a proper scaling for
the incident photon flux.

In order to derive the true S�Q ,�� from the raw data, we
assumed that the background mainly comes from two dis-
tinct contributions: the electronic noise ��0.002 Hz� and the
sample environment. Both are supposed to have a flat energy
distribution within the narrow frequency window explored
here. The overall background contribution was experimen-
tally determined by recording the S�Q ,�� in the high-
frequency region �60–100 meV� on the anti-Stokes side of
the spectrum, where no contribution from the water vibra-
tional spectrum was observed. These measurements have
been repeated for all scattering geometries employed in the
experiment. The recorded signal ��1–4 counts/min, de-
pending on the scattering angle� can be safely taken as a
reliable measure of the global background. Moreover, it is
worthwhile mentioning that we performed parallel fitting
sessions for some representative spectra keeping the back-
ground fixed to different values. This procedure revealed that
±50% variations of the experimentally determined back-
ground value did not change the values of the other fit pa-
rameters within the error bars.

Multiple scattering contributions were evaluated follow-
ing the same route as in Ref. �14� and were found to be less
than 2% of the total measured signal.

These results make us confident that the measured signal
is essentially the dynamical structure factor S�Q ,�� of water
convoluted with the instrumental resolution function. During
the experiment the pressure was kept fixed �P=400 bar�, and
the temperature was changed between 293 and 706 K. The
investigated thermodynamic states are reported in Table I,
together with the corresponding values of some thermody-
namic quantities.

For each thermodynamic state we collected at least 10
IXS spectra in the 2–14 nm−1 Q range. The typical energy
transfer region was ±40 meV, with an integration time rang-
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ing from 70 to 140 s. In parallel to the IXS measurements
we also collected the energy integrated signal I�Q� as a func-
tion of Q in the 1–24 nm−1 range, using a silicon detector
with an energy resolution of 600 eV.

III. THEORETICAL FORMALISM

The line shape of the IXS spectra was described using a
phenomenological line-shape model, derived in the frame of
the memory function formalism. In recent years this ap-
proach was successfully employed to describe the IXS spec-
tra of many disordered systems such as water �13,14,16� and
other hydrogen bonded liquids �24–26�, noble gasses �27�,
liquid metals �28�, diatomic liquids �29�, supercooled mo-
lecular systems �30�, and glasses �31�. In this framework the
time dependence of the intermediate scattering function
F�Q , t� can be expressed in terms of the so-called first-order
memory function m1�Q , t� �32,33�. Moreover, it is possible to
iterate the procedure and express the t dependence of
m1�Q , t� in terms of another function called the second-order
memory function m2�Q , t�, and so on. This iterative formal-
ism is synthesized in the continued fraction representation
for F�Q , t� �32,33� as follows:

F̃�Q,s�
F�Q,0�

= �s +

1

s +

2

s +

3

s + ¯

�
−1

, �1�

where F̃�Q ,s� is the Laplace transform of F�Q , t�, F�Q ,0�
=S�Q� and 
n are quantities that can be expressed in terms of
the spectral momenta of order i�n. Truncating the develop-
ment of Eq. �1� at the second order we obtain

F̃�Q,s�
S�Q�

= 	s +
�T

2�Q�
s + m̃�Q,s�


−1

, �2�

where m̃�Q ,s� is the Laplace transform of the second-order
memory function m2�Q , t�, and �T�Q�=�
1 is the isothermal

sound frequency, which is linked to S�Q� through the finite-
Q generalization of the compressibility theorem �32,33� as
follows:

�T
2�Q� =

kBTQ2

MS�Q�
, �3�

where kB is the Boltzmann constant, T is the absolute tem-
perature, and M is the molecular mass. The variable mea-
sured in an IXS experiment is the dynamical structure factor
S�Q ,��, which is readily obtained from Eq. �2� using the
relation between Laplace and Fourier transforms as follows:

S�Q,��
S�Q�

=
1

�
Im �F̃�Q,s�/S�Q��s=i�

=
1

�

�T
2�Q�m��Q,��

��2 − �T
2�Q� − �m��Q,���2 + ��m��Q,���2 ,

�4�

where m��Q ,�� and m��Q ,�� are the real and imaginary
parts of the time Fourier transform of m2�Q , t�, respectively.
The specific choice to truncate Eq. �1� at the second order
represents a good compromise between a fully satisfactory
description of the experimental data and a rather simple ana-
lytical expression for S�Q ,��. Further developments of the
continued fraction representation beyond the second order
formally ensure the automatic fulfilment of higher-order sum
rules �32,33�. As a consequence, a better description of
S�Q ,�� in the spectral tail region could be provided. How-
ever, such a more accurate approximation is well beyond the
accuracy of the present data.

1. Memory function in the hydrodynamic limit

The information concerning the dynamics of the system is
contained in the memory function m2�Q , t� �hereafter we will
indicate m2�Q , t� as m�Q , t��. It is therefore crucial to care-
fully choose an appropriate functional form for m�Q , t�. The

TABLE I. Relevant properties of the investigated thermodynamic states at P=400 bar: temperature T,
density �, adiabatic sound velocity cs, specific heat ratio �, thermal diffusivity DT, and kinematic shear
viscosity �s.

T �K� � �kg/m3� cs �m/s� � DT �cm2/s� �s �cm2/s�

293 1016 1548 1.01 14.9�104 98�104

337 998 1625 1.06 16.5�104 45�104

367 980 1628 1.1 17.2�104 31.8�104

398 958 1602 1.15 17.7�104 24.3�104

423 938 1565 1.2 18�104 20.5�104

447 917 1519 1.25 18.1�104 18�104

494 869 1400 1.36 17.9�104 15�104

549 800 1220 1.53 16.9�104 13.1�104

598 719 1013 1.77 14.9�104 12.1�104

660 573 707 2.55 10.5�104 11.7�104

706 348 495 4.32 6.32�104 12.8�104
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expression reported in Eq. �5� allows keeping consistency
with the classical hydrodynamic theory in the low Q limit
�32� as follows:

m�Q,t� = 2�LQ2��t� + �� − 1��T
2�Q�e−DTQ2t, �5�

where � and �L are the specific heat ratio and the longitudi-
nal kinematic viscosity, respectively, DT=� /�CV is the ther-
mal diffusion coefficient, and �, �, and CV are the density,
the thermal conductivity, and the specific heat at constant
volume, respectively. In fact, inserting the Fourier transform
of Eq. �5� into Eq. �4�, one obtains

S�Q,��
S�Q�

=
1

�

�T
2�Q��L���

��2 − �L
2����2 + ���L����2 . �6�

Here �L
2���=�T

2�Q�+ ��−1��T
2�Q�y2 / �1+y2� and �L���

=�LQ2+ ��−1��T
2�Q� /DTQ2�1+y2�, where we have intro-

duced the dimensionless variable y=� /DTQ2.
Within the hydrodynamic limit, i.e., for DTQ2 and �LQ2

��L���=cQ �with c the sound velocity�, Eq. �6� reduces to
the well known Rayleigh-Brillouin spectrum. In this limit
inelastic modes in the spectrum account for the existence of
density waves having a propagation speed ���T�Q�
=��cTQ=csQ, where cT and cs are the isothermal and adia-
batic sound velocity, respectively.

2. Transition between the adiabatic and the isothermal regimes

From a physical point of view the hydrodynamic con-
straint DTQ2��L�Q� implies that thermal diffusion is much
slower than the period of the acoustic wave, which therefore
propagates without thermal exchanges—i.e., adiabatically—
through the medium. With increasing Q, the period of the
acoustic modes ��L

−1� decreases as Q−1, while the time scale
of thermal diffusion �	T=1/DTQ2� decreases as Q−2. As a
consequence, at sufficiently large Q values the inequality
DTQ2��L�Q� �i.e., y�1� is fulfilled, and thermal ex-
changes become fast enough to thermalize the acoustic wave
within a propagation period. Taking the y�1 limit of Eq. �6�,
it can be noticed that the effective sound frequency ��L�
reduces to the isothermal rather than the adiabatic one.
Briefly, the finite time decay of the memory function induced
by thermal diffusion leads to a modification of the sound
velocity, consisting of an adiabatic to isothermal transition of
sound propagation around the crossover condition �L�Q�
�	T

−1�Q�.

3. Memory function beyond the hydrodynamic limit

The term ���t� in Eq. �5� accounts for the viscous contri-
bution to the damping of LA modes. The related time decay
appears as instantaneous only in the long time-scale �hydro-
dynamic� limit. However, if the dynamic response is probed
within the THz range, as for IXS experiments, this instanta-
neous approximation definitely breaks down. One of the
most popular ansatz to describe the behavior of the memory
function in this regime is to split the instantaneous contribu-
tion into two terms �10–14,16�: �a� An exponential decay
with time-constant 	� in the order of �ps; �b� a fast contri-

bution ���t�, taking into account both ultrafast dynamical
events �e.g., intramolecular vibrations� �34,35�, and the effect
of topological disorder �31�. With this ansatz Eq. �6� be-
comes

m�Q,t� = 2���Q���t� + 
�
2�Q�e−t/	��Q�

+ ���Q� − 1��T
2�Q�e−DT�Q�Q2t, �7�

where


�
2�Q� = �c�

2 �Q� − cs
2�Q��Q2 �8�

is the strength of the structural relaxation. In Eq. �7� all the
parameters are taken as Q-dependent generalizations of the
corresponding macroscopic variables. Finally, in order to al-
low Eq. �7� to be consistent with Eq. �5� in the hydrodynamic
limit, the following constraint has to be superimposed:

�L�Q�Q2 = 
�
2�Q�	��Q� + ���Q� . �9�

4. Viscoelastic transition

The presence of the first exponential term in Eq. �7� al-
lows retrieving the mentioned viscoelastic transition, respon-
sible for the positive sound dispersion. In fact, this term
gives rise to a frequency dependence of the hypersonic pa-
rameters �L

2 and �L
2 in Eq. �6�, namely,

�L
2 = �T

2�Q� + �� − 1��T
2�Q�y2/�1 + y2�

+ �c�
2 �Q� − cs

2�Q��Q2�Q�x2/�1 + x2� , �10�

and

�L = �� − 1��T
2�Q�	T�Q�/�1 + y2�

+ �c�
2 �Q� − cs

2�Q��Q2	��Q�/�1 + x2� + ���Q� , �11�

where we have introduced the dimensionless variable x
=�	��Q�. If we neglect, for the sake of simplicity, the effect
of thermal relaxations, i.e., setting �=1, we observe that the
resulting S�Q ,�� is characterized by three distinct dynamical
regimes, according to the value of x:

�i� If x�1 �viscous regime� the line shape reduces to

S�Q,��
S�Q�

�
1

�

�T
2�Q��L�Q�Q2

��2 − �T
2�Q��2 + ���L�Q�Q2�2 , �12�

where Eq. �9� has been used. The above expression is fully
consistent with the expected hydrodynamic result in the case
of �=1, i.e., cs=cT. It can be shown that such a consistency
holds also for ��1 �17�.

�ii� When x�1 �viscoelastic regime� the propagation
speed ��L�Q� /Q� and damping ��L�Q� /Q2� of LA modes
strongly deviate from the hydrodynamic values given by
cT�Q�=�T�Q� /Q and �L�Q�, respectively. More specifically,
while increasing x, �L�Q� /Q increases with respect to
�T�Q� /Q and �L�Q� decreases with respect to �L�Q�. At the
same time a further Lorentzian-type mode appears in the
spectrum at �=0. Its integrated intensity and half width half
maximum reduces to f�Q�=
�

2�Q� / (c��Q�Q)2 and 	C
−1�Q�

=	�
−1�Q�cs

2�Q� /c�
2 �Q�, respectively. These two variables are

customarily referred to as the nonergodicity factor and the
compliance relaxation time, respectively.
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�iii� Finally, when x�1 �elastic regime�, the line shape
becomes

S�Q,��
S�Q�

� f�Q����� +
1

�

��
2 �Q����Q�

��2 − ��
2 �Q��2 + �����Q��2 .

�13�

In this limit, the velocity and damping of LA modes reach
again a frequency-independent value given by c��Q�
=���Q� /Q�cT�Q� and ���Q���L�Q�Q2. Moreover, a frac-
tion of the total spectral density �i.e., f�Q�� is confined within
a very small frequency window around �=0.

IV. FITTING PROCEDURE

The IXS spectra I�Q ,�� were analyzed by a fitting routine
based on a standard �2 minimization �36� of the following
model function:

I�Q,�� = A�Q��h��,T�S�Q,�� � R���� + B , �14�

where S�Q ,�� is obtained by inserting the Fourier transform
of Eq. �7� into Eq. �4�. In Eq. �14�, R��� is the measured
instrumental resolution function, the symbol � is the convo-
lution operator, A is an overall scaling factor, and B is a
background term, taking into account both the electronic
background of the detectors and the environmental one. Fi-
nally, h�� ,T� is the dimensionless factor

h��,T� =
��/kBT

1 − e−���/kBT� , �15�

which accounts for the quantum nature of the energy ex-
changes on a microscopic level, and allows retrieving the
asymmetry of the line shape due to the detailed balance prin-
ciple. In order to reduce the correlation between fitting pa-
rameters entering Eq. �14�, some of them have been kept
fixed, namely, �i� the background B and the temperature T
have been fixed to the respective measured values, �ii� both
the specific heat ratio ��Q� and the thermal relaxation time
	T�Q� were fixed to the values derived from the water equa-
tion of state �EoS� �37�, and, moreover, were assumed to be
Q independent. This choice was motivated by the lack of
computational or experimental results for both variables over
the rather large thermodynamic range explored by the experi-
ment.

As a result, five parameters were left free to vary without
any constraint: �i� the overall intensity factor A; �ii� the
Q-dependent generalization of the isothermal sound fre-
quency �T�Q�; �iii� the infinite-frequency sound frequency
���Q�; �iv� the time scale of the exponential relaxation
	��Q�; �v� the amplitude of the instantaneous relaxation
���Q�.

Finally, the characteristic frequency of the LA mode
�L�Q� was evaluated from the maximum position of the lon-
gitudinal current spectrum as follows:

JL�Q,�� = ��/Q�2S�Q,�� , �16�

as determined using the best fit line shape S�Q ,��.

In order to better motivate our choice of the data analysis
strategy, two further comments are deserved:

�i� The single time-scale decay assumption inherent to the
viscoelastic ansatz may appear a rather crude approximation
in view of the more realistic hypothesis of a continuous dis-
tribution of time scales �38�. However, the introduction of
more complex functions in the model would lead to stronger
correlations between the various line-shape parameters with-
out improving the quality of the fits.

�ii� In this context, the presence of a second weakly dis-
persive excitation �experimentally observed at low E’s and
relatively high Q’s �8,9,12,16�� has been discarded, since its
spectral contribution is expected to vanish at the rather high
T’s and low Q’s probed by the present experiment. This
choice was further supported by an alternative fitting proce-
dure for which a second excitation, empirically described by
a damped harmonic oscillator �DHO� function, was added in
the model line shape. For temperatures lower than 398 K we
found that the integrated intensity �I2� of the weakly disper-
sive mode is lower than 10% of the total scattered signal for
all the reported Q values, i.e., for Q�11 nm−1. Furthermore,
with increasing temperature above ambient conditions I2
tends to vanish at low Q. At 398 K and above, I2 was found
to be always consistent with zero within the experimental
accuracy throughout the explored Q range. Moreover, in all
cases the best fit results of the other parameters remained
unchanged, thus suggesting that this second excitation in-
deed does not need to be taken into account in the present
case.

Figures 1–4 show a selection of IXS spectra, together
with the experimental resolution function and the best fit
result. The logarithmic scale in Figs. 1 and 3 emphasizes the
excellent agreement even in the tails of the spectra. It is
worthwhile recalling that a reliable description of these tails
is mandatory to achieve a correct evaluation of the maximum
position of the longitudinal current spectrum. The IXS spec-
tra in Fig. 1 clearly reveal distinguishable inelastic features,
corresponding to LA modes, whose position shifts towards

FIG. 1. Selection of IXS spectra of liquid water at T=367 K and
P=400 bar at the momentum transfers indicated in the individual
panels. The experimental spectra �full circles� are compared with
their corresponding best fit results �solid gray lines� and the instru-
mental resolution function �dotted black line�. The logarithmic scale
emphasizes the overall good agreement even in the spectral tails.
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higher energies with increasing Q. This observation is par-
ticularly true for the spectra at Q�8 nm−1. For the
temperature-dependent IXS spectra at fixed Q �see Fig. 3�
the inelastic features become less pronounced with increas-
ing temperature, and any relic of distinct inelastic shoulders
in the S�Q ,�� disappears, likely due to the reduction of the
sound velocity on approaching supercritical conditions.

Figure 5 shows representative spectra of the static struc-
ture factor measurements. The intensity increase at low Q is
due to an increase of long-distance correlations, as expected
on approaching critical conditions. Correspondingly, the rela-
tive intensity of the first sharp diffraction peak �FSDP� de-
creases owing to the gradual loss of first neighbor correla-
tions while going towards the gas phase. In order to cast
these measurements into absolute units, the measured signal
I�Q� has been corrected for the detector background, the
atomic scattering factors �39�, and geometrical effects. Fi-
nally, the intensity was normalized to fulfill the compressibil-
ity theorem in the Q=0 limit, S�0�=��TkBT /M, where �T

and kB are the isothermal compressibility and the Boltzmann
constant, respectively.

V. RESULTS AND DISCUSSION

A. Sound dispersions

Figure 6 reports for some selected thermodynamic states
�i� the apparent sound dispersion �L�Q� corresponding to the
maxima of the longitudinal current spectra �Eq. �16��, �ii� the
isothermal dispersion �T�Q� obtained from the fit, or, alter-
natively, by inserting the experimental values for S�Q� in Eq.
�3�, �iii� the adiabatic dispersion �1/2�T�Q�, assuming that �
does not depend on Q, �iv� the infinite-frequency dispersion
���Q�, and �v� the inverse of the structural relaxation time
	�

−1�Q� obtained by interpolation of the fit results �see Fig.
10�.

The good agreement between the two independent deter-
minations of the isothermal dispersions provides an impor-
tant consistency check for the reliability of the fitting proce-
dure. Inspecting Fig. 6�a�, it can be observed that the
experimental data for �L�Q� are systematically higher than
the ones corresponding to the adiabatic dispersion, and es-

FIG. 2. Central portion of the IXS spectra, reported in Fig. 1, on
a linear scale. The open circles correspond to the empty cell contri-
bution, whose intensity has been magnified by the factor indicated
in the individual panels.

FIG. 3. Selection of IXS spectra of liquid water at Q=8 nm−1

and P=400 bar at the indicated temperatures. The experimental
spectra �full circles� are compared with their corresponding best fit
results �solid gray lines� and the instrumental resolution function
�dotted black line�. The logarithmic scale emphasizes the overall
good agreement even in the spectral tails.

FIG. 4. Central portion of the IXS spectra, reported in Fig. 3, on
a linear scale.

FIG. 5. S�Q� of water at the indicated temperatures. The arrows
show the Q=0 limit, as evaluated from the water EoS.
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sentially coincide with the infinite-frequency sound disper-
sion over the explored Q range. This suggests that the vis-
coelastic transition occurs definitely below the probed Q
window at this temperature. With increasing temperature
�i.e., from Fig. 6�b�–6�d��, the reported LA dispersions join
the respective adiabatic ones at the lowest Q’s. On increasing
Q, �L�Q� systematically departs from the hydrodynamic ex-
pectation ��s�Q�� and eventually reaches ���Q� �positive
sound dispersion�. Such a viscoelastic transition apparently
occurs around the expected crossover position: 	��Q��L�Q�
�1, also shown by vertical arrows. In some cases the vis-
coelastic crossover is again met at higher Q, due to the lower
value of both �L�Q� and 	��Q�. This gives rise to an “in-
verse” transition, i.e., from the elastic back to the viscous
regimes �see, e.g., Fig. 6�c��. On a general ground, we re-
mark that 	�

−1�Q� increases with increasing T, while �L�Q�
instead decreases. As a consequence, the viscoelastic condi-
tion can never be met at the highest T’s and no positive
dispersion is observed. This trend is most evident at 549 K
�Fig. 6�e��, where �L�Q� and �s�Q� essentially coincide.

Briefly, looking at the sequence ranging from Fig.
6�a�–6�e� a gradual disappearance of the positive sound dis-
persion is observed on approaching Tc. This is consistent
with an earlier observation in deeply supercritical Neon �27�.

Furthermore, it can be readily noticed from Fig. 6 that
���Q� has an almost linear Q dependence for Q�8 nm−1. A

linear fit therefore allows the straightforward extraction of
the infinite frequency sound speed c� as follows:

���Q� = c�Q . �17�

These values are reported in Fig. 7 as a function of tem-
perature, and compared with the respective values of the
adiabatic sound velocity derived from the water EoS �37�. It
can be readily noticed that the amplitude of the dispersive
step, i.e., the difference between c� and cs, reduces on going
towards supercritical conditions. This is consistent with pre-
vious experimental evidences on the reduction of the positive
sound dispersion while going towards nearly critical condi-
tions �14,18�.

A careful inspection of Figs. 6�e� and 6�f� reveals that
another dispersive effect shows up at the highest T’s: the
adiabatic-to-isothermal transition of sound propagation in-
duced by the thermal diffusion process �29�. In fact we note
that �L�Q� is systematically lower than �s�Q�, and ap-
proaches the isothermal values �T�Q�.

In order to achieve a more quantitative characterization of
this effect, the following variable is introduced:

�L��Q� = �L�Q��1 −
���

2 �Q� − �s
2�Q��	�

2�Q�
1 + �L

2�Q�	�
2�Q�

. �18�

It is worthwhile noting that �L��Q� is virtually exempt
from any viscoelastic dispersive effect �embodied in the
Lorentzian term on the right hand side of Eq. �18��, which is
explicitly subtracted. Moreover, we introduce the function

MT�Q� = ��L�
2�Q� − �s

2�Q��/��T
2�Q� − �s

2�Q�� . �19�

It is readily seen that MT allows the determination of the
isothermal or adiabatic character of the sound dispersion. In
fact, MT�Q�=0 or 1 when �L��Q�=�T�Q� or �s�Q�, while
MT�Q�=0.5, when �L��Q�	T�Q�=1.

In Fig. 8 experimental values of MT are plotted as a func-
tion of the dimensionless variable �L��Q�	T�Q�, derived from
the best fits, and compared with the corresponding theoreti-
cal prediction. A fair consistency between theoretical and
experimental values is appreciated. Minor discrepancies are
likely due to the Q dependencies of the parameters ��Q� and
DT�Q�, which have been discarded in the present context.

B. Structural relaxation

The viscous contribution to the time decay of the memory
function is determined by two parameters, its amplitude

FIG. 6. Comparison between isothermal �squares�, adiabatic
�circles�, infinite �triangles�, and apparent longitudinal sound disper-
sion �open diamonds� at the temperatures indicated in the figure.
The isothermal dispersion derived from the experimental S�Q� is
reported as well �solid line�. The dashed lines indicate the values of
1 /	��Q�, obtained from the interpolation of the fit results �see Fig.
10�. The vertical arrows indicate the crossover condition: 	�

−1�Q�
��L�Q�.

FIG. 7. Temperature dependence of the infinite-frequency sound
velocity �full circles� compared with results from Ref. �14� �open
circles� and the value of cs obtained from the water EoS �full line�.
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�
2�Q�= �c�

2 �Q�−cs
2�Q��Q2, and its time scale 	��Q�. Both of

them can be derived from the line-shape analysis. With a
reasonable ansatz for their Q dependence, their Q=0 �mac-
roscopic� limiting values can be obtained by extrapolation.
The macroscopic limit of 
�

2�Q� is related to the correspond-
ing ones of c� and cs through


�
2 = limQ→0�
�

2�Q�/Q2� = �c�
2 − cs

2� . �20�

In the present study cs was derived from the EoS, while
c� was determined using Eq. �17�. The actual values of 
�

2

are reported in Fig. 9 as a function of T. The full line is
proportional to the density evolution for the P=400 bar iso-
baric path. We notice that 
�

2 decreases with increasing T,
and that this trend is correlated with the one of the density.

Following the same procedure as above, the macroscopic
limit of the relaxation time scale 	� was evaluated by fitting
	��Q� with an exponential function as follows:

	��Q� = 	�e−AQ. �21�

Examples of selected fits are reported in Fig. 10. The
corresponding Q=0 extrapolations 	� are reported in Fig. 11
in an Arrhenius plot. As long as the sample is liquid, 	��T�
can be described by an Arrhenius law as follows:

	� = 	0eEa/kBT. �22�

The resulting value for the activation energy Ea
=12.0±0.3 kJ/mole is consistent with the value found by
Monaco et al. �12.6±0.6 kJ/mole� �14,40�. It is believed that
the observed relaxation process is somehow related to the
extended network of hydrogen bonds existing in water. The

principal reasons supporting this picture have been already
discussed in Ref. �14�. The main arguments are �i� 	� is on
the same order of the hydrogen bond lifetime and �ii� the
activation energy of the relaxation is indeed comparable to
the HB energy of water �23 kJ/mole� �1�. Our findings fully
support this picture.

In Fig. 11 we compare the present 	� values with the ones
derived from Ref. �14�. One can clearly observe that the two
data sets almost coincide despite the rather disparate pres-
sures and densities probed in the two experiments. In a first
approximation we can therefore conclude that 	� does not
depend on pressure and density, at least within the relatively
low pressure range probed by the two experiments �i.e., � a
few kbar�.

On approaching the critical temperature the behavior of 	�

deviates from the Arrhenius trend. It is known from diffrac-
tion experiments that the structure of the hydrogen bond net-
work in water dramatically changes close to the critical tem-
perature at the relatively low densities investigated here. In
particular, the hydrogen bond network structure becomes
weaker and the strong tetrahedral coordination of water mol-
ecules is substantially lost �41–44�. One can therefore sup-
pose that the departure from the Arrhenius behavior may be
correlated to the structural changes that the system undergoes
across the liquid-supercritical transition. Moreover, a weak-
ening of the hydrogen bond network around Tc also implies
that interactions based on intermolecular bonding are less
effective. In this case harsh binary collisions may become the
main way to establish interactions among molecules �45�. In
order to quantitatively investigate the observed changes in
the T dependence of the structural relaxation time, we com-

FIG. 8. MT�Q� as a function of �L��Q�	T�Q�. The full line rep-
resents the expected trend.

FIG. 9. 
�
2 as a function of temperature for P=400 bar. The

solid line represents the corresponding temperature evolution of the
density.

FIG. 10. Q dependence of 	��Q� for some selected tempera-
tures. The lines through the data are linear interpolations using Eq.
�21�.

FIG. 11. Arrhenius plot of 	� �full circles: present work; open
circles: Ref. �14��. The full line is the best fit to the experimental
data, using Eq. �22�, while the dotted one represents the value of
�	
, evaluated using Eq. �23�. The vertical arrow shows the 1000/Tc

value.
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pare 	� with the average microscopic intercollision period
�	
 �see Fig. 11�. In principle, �	
 is determined by various
factors such as molecular size, shape, and mass, as well as by
the intermolecular potential and thermodynamic state. How-
ever, without sophisticated calculations, a reasonable estima-
tion of �	
 is readily achieved assuming a hard sphere
Maxwell-Boltzmann gas �dotted line in Fig. 11� �46� as fol-
lows:

�	
 =
1

n
� M

16�d4kBT
. �23�

Here, n and d represent the number density and molecular
diameter, respectively. Below Tc, 	� is much higher than �	
,
and most importantly, displays a completely different T evo-
lution. Conversely, 	� and �	
 become closer on approaching
Tc. The interpretation of this phenomenology is rather
straightforward: in the liquid phase intermolecular interac-
tions are mainly driven by HB attractions, as assessed by the
Arrhenius behavior of 	�. The lifetime of such a HB interac-
tion sharply decreases with increasing T, and becomes com-
parable to �	
 close to Tc. Here, the particles can no longer
develop an extended network of hydrogen bonds, and mutual
interactions become dominated by binary collisions. This pe-
culiar transition between structural and collisional relaxation
across the liquid-to-supercritical transition was observed in
several systems, and is discussed in detail elsewhere �45�.

C. Microscopic relaxation

The microscopic relaxation is induced by dynamical
events having time scales 	�, much shorter than the probed
frequency window. From the analysis of the IXS spectra, the
“time integrated” intensity of the corresponding relaxational
mode ���Q� can be directly evaluated. These values are re-
ported in Fig. 12 as a function of T for some selected Q
values. As already observed for 
�

2 , the T dependence of
���Q� is correlated to the one of the density. This observa-
tion suggests that there is no explicit T dependence of ���Q�,
in agreement with other literature results �16�. This allows
the following factorization of ���Q�:

���Q,T� = g�Q���T� , �24�

where g�Q� is an empiric factor insensitive to thermody-
namic conditions. In Fig. 13 we report the present values of

g�Q� as obtained by averaging ���Q ,T� /��T� over the
probed thermodynamic states. A Q2 dependence of g�Q� at
relatively low Q values can be clearly inferred. This is ex-
pected for the viscous damping in the low-Q �hydrodynamic�
limit. Furthermore, the data systematically deviate from such
quadratic law for increasing Q.

D. Longitudinal viscosity

Finally, the values of the longitudinal viscosity �L�Q�
=�L /Q2 were calculated from the fit results through Eq. �9�,
and are reported in Fig. 14 as a function of Q for some
selected temperatures. The lines through the data represent
best fit curves obtained within the empirical assumption of
an exponential Q decay as follows:

�L�Q� = �Le−BQ. �25�

The macroscopic �Q=0� limit of the longitudinal viscos-
ity �L can be directly evaluated as best fit parameter. In Fig.
15, the experimental results are reported and compared with
the values of the shear viscosity ��S� extracted from the EoS.
In the inset the ratio between the two viscosities is reported.
It can be observed that, at least in the liquid phase, this ratio
is more or less insensitive to temperature with a value of
4.3±0.2, fully consistent with previous determinations
�14,47�, thus providing a further check of consistency for the
performed data analysis.

VI. CONCLUSIONS

In conclusion we have presented here a concise inelastic
x-ray scattering study of the dynamic response of water at

FIG. 12. Temperature dependence of ���Q� for some selected Q
values. The solid line represents the temperature evolution of the
density.

FIG. 13. Average value of the normalized amplitude of the mi-
croscopic relaxation, g�Q�=���Q ,T� /��T� �see text for further de-
tails�. The parabola highlights the Q2 behavior observed in the
0–6.5 nm−1 Q range.

FIG. 14. Q dependence of the longitudinal viscosity �L�Q� for
some selected temperatures. The lines through the data are interpo-
lations using Eq. �25�.
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the transition from the liquid to the supercritical phase. The
experimental spectra have been described with a line-shape
model derived from the generalized hydrodynamics theory
within the assumption that the time decay of the memory
function splits into three different terms. The analysis of the
T, �, and Q dependencies of relevant best fit parameters al-
lows us to draw some very general conclusions concerning
the evolution of the high-frequency dynamics across the
liquid-supercritical boundary:

�1� Along the whole thermodynamic region explored the
Q dispersion of LA modes is influenced by two competing
effects, associated to structural and thermal degrees of free-
dom, respectively. The structural relaxation process domi-
nates in the liquid phase, and it mainly induces a viscoelastic
Q transition of the sound propagation, i.e., the well known
bending upwards of the dispersion with respect to the hydro-

dynamic linear behavior. Such dispersive effect tends to dis-
appear on approaching supercritical conditions, where an op-
posite trend gradually shows up in the form of a negative
sound dispersion. Such a feature, predicted by the hydrody-
namic theory, physically reveals an adiabatic-to-isothermal
transition of sound propagation.

�2� In the liquid phase, the macroscopic limit of the struc-
tural relaxation strength �
�

2� is proportional to the density,
and in the probed thermodynamic range, it does not explic-
itly depend on temperature. In the same region, the macro-
scopic limit of the structural relaxation time follows an
Arrhenius behavior, with an activation threshold comparable
to the energy of hydrogen bonds, suggesting a close relation
between the relaxation and the water hydrogen bond net-
work. However, we believe that a quantitative relationship
between the structural relaxation and water structures or in-
teractions cannot be unambiguously assessed on the basis of
the present experimental data.

�3� On approaching supercritical conditions, the Arrhenius
temperature dependence breaks down and the relaxation time
scale becomes similar to the temperature dependence of the
characteristic time between intermolecular collisions. This
finding suggests that binary intermolecular collisions are
dominating the microscopic dynamics in the supercritical
phase.
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